From Abstract to Concrete Repairs of Model
Inconsistencies: an Automated Approach

Roland Kretschmer*, Djamel Eddine Khelladi*, Andreas Demuth*, Roberto E. Lopez-Herrejon! and
Alexander Egyed*
*Institute for Software Systems Engineering
Johannes Kepler University Linz, Austria
Email: {roland.kretschmer, andreas.demuth, roberto.lopez, alexander.egyed} @jku.at
T ETS - University of Quebec, Notre-Dame Ouest 1100, H3C 1K3, Montreal, Canada
Email: first_name.last_name @etsmtl.ca

Abstract—A common task performed in model-driven software
engineering is evolving models. This task is typically performed
manually during the design or implementation phase of software
projects and is known to cause inconsistencies. Despite extensive
research on consistency checking, existing approaches either
provide abstract (i.e., incomplete) repairs only, or they require
manually predefined strategies on how to repair inconsistencies.
In this paper, we present a novel approach that provides concrete
(i.e., executable) repairs without the need of predefined repair
strategies. Furthermore, our approach proposes functions which
automate the generation of concrete repairs at runtime. An
empirical assessment of the approach on six case studies from
industry, academia and GitHub demonstrates its feasibility, and
shows that the provided concrete repairs are relevant and can
fix their corresponding inconsistencies automatically.

I. INTRODUCTION

In model-driven engineering [1], [2], software models are
used as the primary development artifacts to raise the level of
abstraction and to make it easier for engineers to understand,
analyze, and maintain software systems [3], [4]. A typical
example of such software models are UML models (e.g.,
class, sequence, and state machine diagrams) but also domain-
specific models [5], [6]. Using models has been proven to
simplify communication between engineers and to have posi-
tive effects on software quality [7]. However, software models
are subject to change not only during the initial development
of a software system but also during maintenance [8]. Typical
scenarios are: new features are added continuously to adapt the
software to changing market demands, existing functionality is
removed as it becomes outdated or the internal structure of a
software system is changed to improve quality aspects such as
maintainability or scalability. However, the benefits of models
hinge on the fact that they must be kept consistent during
the development process. Unfortunately as the models evolve,
inconsistencies may arise which obviously need to be repaired
for the models to remain useful [9], [10]. Such inconsistencies,
if they remain undetected, can cause serious issues that range
from project delay to failure [11], [12].

In literature, there is an extensive list of approaches for
automatic analysis and detection of inconsistencies in software
models (e.g., [13]-[18]). Those approaches often propose
abstract repairs (i.e., identify an inconsistent model element,
but do not say how to change it) but rarely concrete repairs

(i.e., identifies how to change model elements with a concrete
value). For example, the repair "rename class Score" is an
abstract repair, which then can be transformed into a concrete
repair "rename class Score to Grade". In this example,
knowing the value Grade makes the abstract repair a concrete
repair. This is crucial for automating the repair task of model
inconsistencies since only concrete repairs can be executed
automatically on the model. The challenge of providing con-
crete values for abstract repairs to turn them into concrete
repairs is not a trivial task, because a large set of values may
exist and identifying all those that will fix the inconsistency
is difficult. For example, there are theoretically an infinite
set of strings available for renaming the class Score. Yet
practically, only a limited subset is able to form concrete
repairs for fixing the inconsistency. Existing approaches for
generating concrete repairs, on the one hand, require explicitly
to define repair strategies [16], [17], [19], which can be time
consuming, tedious and error prone to write and which are
also limited to specific models or types of inconsistencies.
On the other hand, they often provide a limited number of
values which only satisfy a given set of patterns to repair the
inconsistencies [18], [20], with the downside of not necessary
covering all concrete repairs which lowers the repair quality
and ultimately the model quality.

This paper builds on the work of Reder et al. [13],
[21] that focused on computing abstract repairs. Although,
in some cases concrete repairs are proposed in [13], [21]
(such as to delete a particular element in the model), they
focused mainly on computing abstract repairs. In this paper
we primarily focus on computing concrete repairs that can fix
model inconsistencies automatically. Our approach is made
independent from [13], [21] and can be reused on top of
approaches such as [19], [22] to obtain the abstract repairs
needed for their transformation into concrete repairs. We
propose a novel approach that uses internal information (i.e.,
values) of models to transform abstract repairs into concrete
repairs automatically. The idea to rely on existing information
for fixing inconsistencies has already shown to be efficient
in fixing bugs [23]. This paper explores the same idea in the
context of repairing model inconsistencies. The contributions
of our paper are the following:

1) We propose various generator functions to generate
concrete values that are retrieved from the model, which

allows us to compute potential values for abstract re-
pairs. The generator functions are designed indepen-
dently from any abstract repair, inconsistency, or model
and are thus reusable.

2) We propose an algorithm to transform abstract repairs

to concrete repairs. Our algorithm takes each abstract
repair and a set of generator functions, and transforms
the abstract repair into multiple correct concrete repairs.
The algorithm is generic and can easily be extended with
new generator functions.
The algorithm explores in depth concrete repairs and
keeps the ones that fix the inconsistency entirely. In
particular, when several values must be combined to
form an entire concrete repair, we only present to the
user combinations of values that are able to fix entire
inconsistencies automatically. This way the user is not
overwhelmed.

3) Among the evaluated models, we evaluate three ver-
sioned models where the inconsistencies in the original
models have been corrected by their users in the new ver-
sion. Thus, we compare our computed concrete repairs
with the actually applied user repairs to demonstrate the
relevance of our approach and the computed concrete
repairs.

The approach has been implemented in a research prototype
to demonstrate its feasibility, and it has been empirically
evaluated to assess its performance. The evaluation shows that
we are able to generate at least one concrete repair for 60% of
all abstract repairs on average, and in 71% of the cases 1 to 5
concrete repairs are generated for each abstract repair. In total,
we provide approximately 36000 concrete repairs for 3165
abstract repairs among 391 inconsistencies in 6 models taken
from industry, academia and open source GitHub projects.

II. RUNNING EXAMPLE

To illustrate our approach, we use a motivating example
of a video on demand (VOD) system which is based on a
client-server architecture. Figure 1 depicts example snippets
of the two different UML diagram types of this system: a
class diagram and a sequence diagram.

In the class diagram in Figure la, class User initiates the
process of selecting and displaying a movie. Class Display
handles the user interaction, e.g., receiving user input and
visualizing movies, and class St reamer manages the com-
munication of a client with the movie server. The sequence
diagram in Figure 1b describes the operation where a user
selects a specific movie by calling method select on an
instance of class Display, which then initiates a com-
munication with an instance of class Streamer. It first
connects to the Streamer (i.e., calls method connect on
an instance of St reamer) and then starts playing the selected
movie (i.e., calls method stream on instance Streamer).
The Streamer object then sends frames to the Display
instance via message show.

In this paper we use the Object Constraint Language (OCL)
[24], a declarative language based on first order logic, to
define our consistency rules for UML models. However, for
the sake of simplicity, we will give an informal description
of our consistency rules in this section. Table I shows two

Q User Q Display Q Streamer
&2 select ()
£ login () Ef? I ? 3 connect ()
o play () 42, stream ()
2 logout () £ st 9 ST
© stop () 42 wait ()
§2 draw ()
Lo {"‘lass Aiooran
H u:User H d:Display El s:Streamer
|
1: select 1.1: connect ‘
1.2: stream ‘
—_—
1.1.2: show ‘
<
|
I

(b) Sequence diagram
Fig. 1: UML model snippets of VOD System.
TABLE I: Consistency Rules

Consistency Rule 1
(CR1)

Message direction must match
class association and message must
be defined as an operation in re-
ceiver’s class.

Consistency Rule 2
(CR2)

Every lifeline has to have at least
one message call from another
class.

examples of consistency rules (CRs). Consistency rules define
specific constraints that must hold in software models. These
constraints express relations among model elements that can
range from well-formedness to very domain-specific ones for
non-functional properties such as maintainability or usability
[25].

Let us now describe our two consistency rules which are
instantiated in our model. CR1 ensures that every message
direction in the sequence diagram matches the corresponding
class’ association, and messages in sequence diagrams are
defined as operations in the message receiver’s class. CR2
checks that every lifeline has at least one message call from
another class. This might for example prevent dead code
during instantiation. With these two CRs from Table I, the
following two inconsistencies are identified in the model from
Figure 1.

I1 Violation of CR1. There is no corresponding oper-
ation in the class Display for the message show
(message highlighted in bold text in Figure 1b) and
the association from Display to Streamer for-
bids operation calls from Streamer to Display
(highlighted with a bold X in Figure 1a).

I2 Violation of CR2. Lifeline s2:Streamer has no
message call from another class (s2 highlighted in
dark grey in Figure 1b).

Let us now take a closer look at the inconsistencies and
alternatives on how they could be fixed. To fix I1, the associ-
ation denoted with the bold X in Figure la has to be changed
to be bidirectional, and the message show can be renamed
to play, stop, draw or select to conform to class

Display. Another possibility would be to change association
X to be bidirectional and to add an operation with the name
show to class Display. To fix I2, we first need to have a
look at the class diagram shown in Figure la. Here we see
that only class Display is allowed to call class Streamer
via their association. This means, that only message calls from
lifeline d:Display to lifeline s2:Streamer are allowed
in the sequence diagram (Figure 1b). One solution to fix I2
would be to add a message connect, or stream or wait
from lifeline d:Display to lifeline s2:Streamer. Other
valid solutions would be to add two or three messages for the
three operations.

The above repairs are all executable, i.e., they do not
only suggest what to change, but how to change specific
model elements. However, a challenging task is to propose
concrete values (e.g., play, stop, etc). This paper proposes
an approach for computing those values, combining and trans-
forming them into model concrete repairs which are able to
fix inconsistencies automatically.

III. BACKGROUND

This section provides definitions and examples of the most
important terms for a proper understanding of this paper. Our
terminology changes substantially our previous work (see [21],
[25], [26]), which we adopted and extended as follows:

Definition 1: Model. A model M consists of elements (e €
M) where elements can have properties p that are accessed
with the dot (.) operator e.g., "e.p".

Definition 2: Scope Element. A scope element is a model
element and its corresponding properties (e.p) accessed during
the validation of a consistency rule. A set of scope elements
is called a scope.

Definition 3: Cause. A cause; of an inconsistency i is all
the scope elements that violate the corresponding consistency
rule. Hence, a cause is a subset of a scope.

Definition 4: Repair Action. A repair action defines a
change of a model element property that resolves an incon-
sistency in part or full (often multiple repairs actions are
needed to resolve an inconsistency). A repair action contains
the model element (e), the property (p) that is affected by
the change, the type of change (ch), and a value (v, which
can be a model element v € M, or a primitive value v € V)
or no value(d) applied to the property. The following types
of changes are possible: & adds a value, © deletes a value
and © modifies a model element property to the value. In
addition there are the constraining changes: #, <, >, where
respectively a property has to be different than the value,
less than the value, or greater than the value. P(z) is the
power set of x.

ra:= (e,p,ch,v),ch € {&,6,0,#,<,>},
vePV)UPM)
execute : RA — M, (e, p, ch,v) —

ep=epUv chis®

ep=ep\v chis©
zlx=M\e)Ue|ep=uv ch is ®

e=ce ch is # or < or >

e =e v is &

Furthermore we define the function execute, which per-
forms a given repair action by applying the provided model
change information to the model. This function maps from
repair actions to new model states (RA — M) by defining
a new model state z in which the old model element e is
replaced with a new model element ¢’ (M \ e) Ue’). For this
new model element ¢’ its corresponding property is changed
based on the provided repair action change ch (B, ©, ®). If
no value (v is &) has been provided or the change is different
(), greater than (>) or less than (<) nothing changes in the
model (e' = e).

Definition ~ 5: Abstract Repair Action. An
abstract repair action is like a repair action, but with no
concrete value (). We also define the function isAbstract
which checks if a given repair action is abstract, i.e., if the
value is equal to @ (ra.v < @) or the change is either #, >
or <.

isAbstract : RA — B,ra > ra.v < @ Vra.ch € {#,>,<}

As an example, the inconsistency I2 discussed in Section II
can be fixed by adding at least one unspecified message call
to s2:Streamer. Expressed as an abstract repair action this
leads to: (s2,messagesReceived, ®,), which means that
an unspecified value (&) has to be added to model element’s
property s2.messageReceiver. Note that this abstract
repair action is a hint and is not executable, because we do
not have a specific value to add.

Definition ~ 6: Concrete Repair Action. A
concrete repair action is like a repair action with always a
concrete value (v € P(V) U P(M))

We also define an operation eliminate (¢) which takes a
specific set of concrete repair actions (CRA) and removes their
corresponding scope elements from the cause (cause;) via
execution (execute). Please note that execute only removes
the concrete repair action’s corresponding scope element and
not the entire cause.

cra = ra € RA|-isAbstract(ra) A execute(ra) o cause;

To eliminate the cause for I2 (from Section II) we
have to execute the concrete repair action: cra = (s2,
messagesReceived, @, Display.operations.connect) that
adds the message connect. After cra has been executed
s2.messagesReceived is removed from the cause and
does not take part in the inconsistency anymore. Note that it
might be necessary to change multiple scope elements to fix
an inconsistency. For that purpose, we define groups of repair
actions as follows.

Definition 7: Repair. A repair is a non empty collection
of repair actions (ra) that resolve a cause of a specific
inconsistency (i). This set ra may contain both repair ac-
tions which can be abstract (isAbstract(x)) and/or concrete
(—isAbstract(x)). If a repair action is concrete it also elimi-
nates its cause by execution (execute(z) ¢ cause;).

(1 € I,ra C RA;|{z]isAbstract(x) V —isAbstract(z) =

(execute(z) © cause;)})

Furthermore we define the term abstract repair which states
that the set of repair actions contains at least one abstract repair
action (ra C RA;|(3x € RA|isAbstract(x)), and we also de-
fine the term concrete repair which exclusively contains con-

crete repair actions (ra C RA;|(Vax € RA|-isAbstract(x)).
Please note that only a concrete repair is able to eliminate a
cause entirely and therefore can fix an inconsistency.

As presented above, the abstract repair (I2,{(s2,
messagesReceived, @, @) }) for the the inconsistency I2 can
be turned into a concrete repair by adding a specific message
call connect to s2.messagesReceived, i.e., (I2,{(s2,
messagesReceived, @, Display.operations.connect)}).
The main contribution of this paper is the ability to transform
abstract repairs to concrete ones, by generating concrete
values with generator functions (see Section IV-B).

Definition 8: Generator Function. We define a
generator function which maps the tuple set of all scope
elements and model ((SE,M)) to multiple model elements
and their property values (P (M) U P(V)).

gf : (SE,M) — P(M) U P(V)

As an example, let us consider the abstract repair from
the previous definition (Definition 7). It is obvious that we
need concrete values (i.e., specific operations from classes)
for this abstract repair to become a concrete repair. For this
we use the generator function: gf((s2, messagesReceived),
Myop), which returns all operations from the model:
select, play, stop, draw from Display; connect,
stream, wait from Streamer and login and logout
from User. A more optimized way to return operations would
be to return only Display’s operations, because this class
has a direct association in the class diagram with Streamer.
We also map this generator function to the type lifeline
and the property messagesReceived, so we can get all
needed operation names if we discover an instance of type
lifeline (s2 in this example).

IV. OVERALL APPROACH

This section presents our overall algorithm to convert ab-
stract repairs to concrete repairs. First we give a general
overview of the information flow, then we describe how we
applied the concept of generator functions to our approach,
and finally we discuss the implementation of the algorithm.

A. Information Flow

Overall, this section describes our approach and explains
the main ideas behind the implementation of our abstract to
concrete repair algorithm.

Figure 2 shows the basic workflow of our abstract to
concrete repair transformation algorithm that consists of the
following three stages:

The first stage (step 1) checks a model for
inconsistencies with the provided consistency
rules. Those inconsistencies are converted into a tree

structure that describes the buildup of abstract
repairs. Note that trees for abstract repairs do not have
leaves (e.g., concrete values to repair an inconsistency)
and are not able to fix an inconsistency. Those trees are
constructed by parsing an OCL consistency rule and creating
an abstract syntax tree for every instance of the consistency
rule’s context type in the model. They are then utilized to
checked if the expected values of the consistency rule match
those of the model. If there is a mismatch we know which
model element and its corresponding property needs to be

repairs (this model element is then a scope element). All
model elements accessed during this process are considered
the scope of an consistency rule. For more information
on how consistency is checked and abstract repairs are
generated, refer to [21], [25]. The second stage (step 2) then
applies generator functions to retrieve sets of values
(v1,v2,v3) for specific model elements and their properties.
Those values are then tested whether they are able to fix
the corresponding inconsistency. All incorrect values are
then removed from the value sets, for example ’a’ from
ve in Figure 2. In stage three, (step 3) we then combine
the evaluated values from stage two with the knowledge
from stage one and additional information about involved
model elements. This finally leads to concrete repairs,
which are then able to fix their corresponding inconsistency.

B. Generator Functions

At the core of our approach, generator functions are used
to compute concrete values for generating concrete repairs.
As we will see, Algorithm 2 is made generic and different
generator functions can be used (from general purpose to
domain-specific). We have defined 44 generator functions (21
type 1, 21 type 2, 2 type 3) so far, but engineers can easily
add their specific generator function without changing our
algorithm. In the following sections we give examples of
different types for generator functions.

Type 1: All values of a specific type This type of generator
functions returns all values of a specific type, as an example all
strings or all operations. The benefit of this type of generator
functions is that they are very generic and can be reused over
a wide range of abstract repairs and models without changing
them, as well as there are more chances that one of the values
will fix the inconsistency. The disadvantage of this type of
generator functions is that they may lead to a large amount
of values to evaluate, because there are usually thousands of
strings in medium to larger size models.

Algorithm 1 shows the implementation of a generator func-
tion of type 1, which returns all strings from a model for a
property of type ’string’. The user then has to register this
generator function for a specific type and property (e.g. type
class and its property name). This allows our algorithm to call
the generator function on all abstract repairs which involve
fixing classes with names.

Algorithm 1 Generator function for all strings within a model

1: function GETALLSTRINGS(m € M, p € m, M) > m
is a model element, p the corresponding property and M
the model

2: values < &

3: if p isType ’string’ then

4: values <— M.getElementsOf Type(’string’) >
Utility function

5: end if

6: return values

7: end function

Type 2: All values of a specific type for a specific
property In contrast to type 1 generator functions, this type
of generator functions is tailored not only to a type but also

@y @)

R N

: 922 gl
Computing Abstract Repairs

v, = {1,€3,..}

v, ={" b, ..}

vz = {?bh' obj,
M. .

Generator Functions

} SO ¢ obj, 3 b objy

Computing Concrete Repairs

Fig. 2: Overall approach of concrete repair generation.

to a specific model element property (e.g. names for classes,
names for lifelines, messages for lifelines, etc). The advantage
of this type of generator functions is that they return a subset
of values of type 1 generator functions. For instance all class
names are a subset of all strings, which leads to a reduced
amount of value evaluations. The disadvantage of this type of
generator functions is that in large software models this still
can lead to a large amount of values, for instance there can
be thousands of classes in a large software project.

Type 3: To reduce the amount of values returned by type 2
generator functions, it is possible to write generator functions
for specific models or inconsistencies (type 3). However, this
takes more effort in writing and also limits their versatility,
because model specific information (e.g. specific class names,
operations) has to be included, which limits the usability in
other models drastically. Nonetheless, we implemented some
type 3 generator functions and we will discuss their results in
Section V. In contrast to type 1 and type 2 we are not able to
provide type 3 generator functions for every model. Thus the
user has to implement type 3 for her models on her own.

C. Algorithm

Algorithm 2 shows the pseudo code for our approach.
The algorithm is structured into several phases for a better
understanding.

Phase A: input and initialization (Lines 1-4). The input of
our algorithm is a specific inconsistency i, a specific model
element m and a set of generator functions gf. The model
element m helps to focus only on those abstract repairs where
m is involved.

Phase B: main iteration, preparing scope elements
(Lines 6-13 and Line 34). This phase iterates over all relevant
abstract repairs selected in phase one. First it selects the cor-
responding abstract repair actions from which scope elements
are collected. This is needed to for the generator functions.

Phase C: Iteration over all scope elements (Lines 15—
33). This phase iterates over all previously acquired scope
elements and retrieves all values from the generator function
by calling getValues (). Second, if the property e . p is not
a collection (isMultiValue ()) then the algorithm tries to
reduce the amount of values by applying the abstract repair
action’s operation (Line 31).

For instance, consider the abstract repair action:
{account.money,>,0), which states that an account
has to have at least some money on it. A generator
function for account .money returns the following values:
values = {—3,5,8}. The function apply now removes all
values which do not satisfy the condition to be larger than
zero. If a property is a collection then we enter phase D.

Phase D: Collection type properties (Lines 17-29). This
phase computes if values have to be added or removed to

property p (which is a collection of values), and performs
the necessary generation of combinations. First the actual
size of p is calculated (actualSize), and then the needed
size p is computed to fix the corresponding inconsistency
(requiredSize, this information is embedded in the in-
consistency itself). If the collection e . p has too few elements
(actualSize < requiredSize), the algorithm then calculates
the needed amount of elements to be added (diff). We then
generate all combinations of size diff from the value set.
The combination generation process implements the binomial
coefficient (Z)* where the order of elements is not relevant and
elements are unique. If the collection has too many values the
procedure is analogously executed.

As example, consider I2 from Section II, where
s2:Streamer has no message call from another class.
Expressed as an abstract repair we get the following: (12,
{(s2.messages.size,>,2)}), which states s2:Streamer
has to have at least two message calls from another class.
To convert this abstract repair a generator function returns the
value set of all operations from class St reamer: connect,
stream, wait. Now (lwg‘es‘) = 3 combinations are gen-
erated: connect, stream; stream, wait; connect,
wait.

Phase E: Cartesian product, validation (Lines 36-38).
This phase of our algorithm performs the generation of the
cartesian product (i.e., several scope elements in an abstract
repair) and validates the resulting concrete repairs. First, the
cartesian product is generated for all scope elements involved
in the current abstract repair.

As example consider
class Display has no
association between

I1 from Section II, where
operation show and the
Display and Streamer
is not bidirectional. Expressed as an abstract
repair this leads to: (I1,{(s.show.name,®,d),
(Streamer.association.bidirectional, ®, true)}),
which states that s.show.name has to be renamed
and the association has to be made bidirectional.
To convert this abstract repair to concrete repairs
a generator function for «class Display returns
its operations: select, play, stop and draw.
Afterwards every operation of Display is combined with
Streamer.association.bidirectional, which
leads to the following concrete repairs: (11, {({s.show.name,
@, select’), (Streamer.association.bidirectional,
O, true)}), . (I1,{{s.show.name, ®,
'draw’), (Streamer.association.bidirectional, ©, true)}).
Finally, all the combinations of scope elements and values
have to be checked if they are indeed able to fix i [13]. This
is done by applying the resulting repairs to the model, and
comparing the changed model elements/values to the expected
consistency rule’s values in the concrete syntax tree.

Algorithm 2 Abstract repair to concrete repair algorithm

1: function CONVERT(Z € I, m € M, gf C GF)
functions

> 1 is an inconsistency, m a model element and gf a set of generator

2: concreteRepairs <— & > Contains all converted repairs in the end
3: > Contains all abstract repairs from i containing m

4: repairs < {x € RlisRepair(i,x.i) A (y € z.ray.e & m.e Ay.p < m.p) AisAbstract(z)}

5: > Iterate over all relevant abstract repairs in i to convert them to concrete repairs

6: for all r € repairs do

7: repairActions < {x € r.ralisAbstract(x)} > Only convert abstract repair actions
8: scopeElements < & > Set of all relevant scope elements
9: s€2v — J > Map for scope elements to values from their gf
10: > Collect all scope elements from repairActions to get model values

11: for all ra € repairActions do

12: scopeElements < scopeElements U (ra.e, ra.p)

13: end for

14: > Prepare values for every scope element depending on property type

15: for all se € scopeElements do

16: values < getValues(se,M, gf)

17: if isMultiValue(ra.e.p) then > Property is a collection
18: actualSize < |ra.e.p| > Current size of the collection
19: requiredSize < getRequiredSize(ra.e.p,1) > Needed size to resolve i
20: if actualSize < requiredSize then

21: > Collection has not enough values, calculate difference

22: dif f < requiredSize — actualSize
23: > Generate value combinations
24: values < getCombinations(values, dif f)

25: else if actualSize > requiredSize then

26: > Collection has too many values

27: dif f < actualSize — requiredSize

28: values < getCombinations(ra.e.p, dif f)

29: end if

30: else

31: values < apply(values, ra.op, ra.v) > For better efficiency
32: end if

33: end for

34: se2v < se2v U (se, values) > Add scope element with its values
35: end for

36: cp < cartesianProduct(se2v)

37: concrete Repairs < get Repairs(cp, i) > Convert Cartesian Product into concrete repairs
38: return validate Repairs(concrete Repairs, i)

39: end function

V. EVALUATION

This section evaluates our approach by assessing the cor-
rectness, applicability and usefulness. For the evaluation we
applied 20 consistency rules to six models taken from three
different sources: academia (VOD), industry (MVC, Dice) and
GitHub (Proll, fullAdder, activityMngr) [27]. Three models
from GitHub have two versions each, where version one has
inconsistencies which have been fixed in version two by a
human, which allows us to compare our repairs with the
actual applied ones. We selected those models randomly and
without any pre-analysis to mitigate any biased evaluation. We
applied the consistency rules with the Model/Analyzer, which
has a compilation module integrated to check the syntactical
correctness of the OCL consistency rules [25]. The model sizes
range from 300 to 5000 model elements and the number of

inconsistencies from 9 to 207. Table II shows details (e.g.
number of model elements, number of inconsistencies, number
of abstract repairs) of all models used. Theoretically the set
of concrete repairs may be infinite (or too large), however, as
we use concrete values from the models, it naturally limits
the space to a finite set of concrete repairs that we explore.
Nonetheless, we set an upper limit of 5000 generated repairs
(cut off threshold) per abstract repair, which will be discussed
in the threats to validity section.

A. Goals

In this section we define three research goals to evaluate
our approach.

Goal 1: Abstract to concrete transformation. Investigate
how many abstract repairs we are able to convert to concrete

TABLE II: Model information

Model #Model #Incon- #Abstract Source
Name Elements sistencies Repairs

proll 284 16 134 GitHub
fullAdder 992 37 203 GitHub ?
activity 1185 51 270 GitHub ¢
Manager

VOD 467 9 43 Academia
MVC 1410 71 554 Industry
Dice 4485 207 1961 Industry

“https://github.com/1 1 TCLC-DA-CNPM/doan-cnpm-quanly-ban-
dien-thoai-pro11tclc/
bhttps://github.com/acdoorn/design-patterns/tree/master/diagrams/

“https://github.com/brunodevesa/DataStructures_PartThree/tree/master/diagrams

100% — — 1 11— — 1 — —

90% IR
~ N = ~
80% Al | ol = [®] v NS
~ = ol |Of | o N
o N
70% |© N a L x| N
L & 8
60% —
50% —
40%
w L
= N N [¢4)
30% S|l |8 2R C] 8|S
D o = = [o]
20% | =) N[o
N
10%
0%
t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2
pro11 fullAdder activityMngr VOD MvC Dice

Owith concrete O without concrete

Fig. 3: Abstract Transformation.

repairs (e.g. abstract repairs with no concrete repair vs abstract
repairs with at least one concrete repair) for every model.

Goal 2: Relevant concrete repairs. Show that our gen-
erated repairs are relevant for real world consistency fixing.
That means, whether we find repairs a user would also have
applied to the models manually.

Goal 3: Relevant generator functions. Show that our
used generator functions on the one hand are sufficient to
find relevant concrete repairs, and on the other hand limit the
amount of concrete repairs per abstract repair (i.e., compare
results of type 1 and type 2 generator functions). Limiting the
amount helps the user in the end to easily select one desired
concrete repair without iterating over a large list of repairs.

B. Results

Goal 1: We applied all consistency rules to every model, and
applied our approach and generator functions to all abstract
repairs (we get from [13]) to transform them to concrete
repairs. On average we were able to find at least one concrete
repair for more than 55% (50% for type 1, 60% for type 2)
of the abstract repairs.

Figure 3 shows the the percentage of abstract repairs that
were transformed to concrete (grey), and the percentage of
those repairs that were not transformed (white).

The numbers in the bars show the absolute amount of
abstract repairs with and without concrete repairs. Note that
the number of scope elements varied from 1 to 7, and we were
able to find concrete repairs regardless the number of scope
elements. However, the more scope elements we had, the more

108

102 M L

100 H

6- 6- 6- 6- 6- 6-
1-5 20 >20 1-5 20 >20 1-5 20 >20 1-5 20 >20 1-5 20 >20 1-5 20 >20
pro11 fullAdder activityMngr VOD MvC Dice

ot1 47 0 17 76 0 25 86 0 34 18 0
Ot2 70 13 0 101 16 13 121 25 18 27 2

7 234 5 65 461 153 206
0 285 46 51 490170 92

Fig. 4: Concrete Repairs Count.

1010

9 N
10 » Rl [
108 5 o |29
oo = © X 2
: 2 . 9D =)
108 S * e = 2
N2 5 =
= =) oW
. o> N 9 2 o AN
v IF 0 3 &
o > ES * —
108 @ p— [
<
10°
102 = NN @) W] O [N L @ NN N
o (o] [e2] N a S - ~ S © - (o]
101 * * * * * * * * * * * *
PR [P [[PG [[y [[(U I P [B g
o o o o o o o o o o o o
100 w N w N w N N - w w S w
t1 t2 t1 2 t1 t2 t1 2 t1 t2 t1 2
pro11 fullAdder activityMngr VOD MvC Dice

DOvalid repairs Orepairs to validate

Fig. 5: Validation Count.

concrete repairs we generated. Abstract repairs for which we
could not find concrete repairs needed information not present
in the model but new information to be created. This was
expected since only the user can create new knowledge that
only she is aware of.

As an example for the Video on Demand model (VOD)
we were able to find at least one concrete repair for 29
abstract repairs when applying type 2 generator functions. For
14 abstract repairs we could not find any concrete repairs,
because of the reason mentioned earlier. For instance, applying
a consistency rule which states that "a message direction must
match the class direction”, to the model presented in Section II
results also in the following abstract repair for lifeline s: (I3,
{(s.type, ®, @) }). This abstract repair states that to resolve
I3 the type of s has to be changed to a class which has the
correct association, and also the correct operation. But since
there is no class already present in the model which satisfies
the conditions of CR1, we did not find any concrete repair
for this abstract repair. Again, only the user would be able to
create this class. Creating classes based on pattern generation
could fix the inconsistency. However, it could also reduce
the quality of the concrete repairs [18], since there might be
nonsense generated values. For instance, a pattern generator
can create a class with an empty name or the name X20SZ
together with a bidirectional association to class Display,
which repairs 13. However, an empty name or the name X20SZ
is not guaranteed to be understood by a human and most likely
needs to be changed by the user after generation.

Goal 2: In this evaluation, we applied our approach to three
versioned models (proll, fullAdder, activityMngr)
taken from GitHub. Every model contains several inconsis-
tencies in version 1 and the model designer has manually
fixed those inconsistencies in version 2 (they are not present
anymore). In the set of our generated concrete repairs for
version one, with both generator function types (1 and 2) we
were able to find every concrete repair the designer has applied
manually for every inconsistency in every model to version
one. For instance, example for inconsistencies in proll were
messages with incorrect names (no corresponding operations)
and incorrect type specifications for the lifelines. Examples of
the computed concrete repairs were to rename the messages
with existing operations and to change the lifeline’s type with
existing classes. This means that our approach covers all (both
type 1 and type 2 generator functions) of the designer’s needs
regarding the repair of inconsistencies, with respect to our
three versioned models. Of course our approach also suggested
additional concrete repairs, which may be of interest for other
model designers.

Goal 3: Figure 4 shows the amount of concrete repairs
per abstract repair separated into three classes. Those classes
range from 1 to 5, 6 to 20 and more than 20 concrete repairs.
On the y-axis you can see the amount of abstract repairs
in the corresponding class (note the logarithmic scale). We
furthermore calculated for both generator functions types 1 and
2 the average percentage of concrete repairs per category, e.g.,
> repairsi—s/ > repairs. Where repairsi_s is the class
from 1 to 5 concrete repairs. From Figure 4 we can also see
that type 2 generator functions are able to convert 71%! of all
abstract repairs into one or up to five concrete repairs, 18%
have 6-20 and 11% have more than 20 concrete repairs. Type
1 was able to convert 64% of all abstract repairs into one or up
to five concrete repairs, 11% have 6-20 and 25% have more
than 20 concrete repairs. This means that in addition to finding
relevant repairs, in 71% (64% for generator functions type 1)
of the cases the user is not overwhelmed, but chooses only
between one to five concrete choices for a given abstract repair
to repair the inconsistency. Note that the very large number
of concrete repairs per model in Figure 5 is due to the few
abstract repairs for which more that 20 concert repairs were
computed (e.g., 100 in some cases).

Figure 5 shows the amount of generated repairs per genera-
tor function type and model. This amount has been summed up
over all abstract repairs from the specific generator function
type and model (note the logarithmic scale on the y-axis).
This figure shows that type 2 generator functions have a large
impact (reduced by one order of magnitude) on the amount
of repairs to be validated, thus they significantly improve the
performance for the validation process. However, this also
might lead to a reduction of concrete repairs, since they do
not return every possible value. For example, for the proll
model and its 16 inconsistencies, type 1 generator functions
produced around 50 thousand potential repairs, whereas type 2
produced 7700, which after validation resulted in about 1800
(type 1) and 280 (type 2) concrete repairs. This results on
average in 13 concrete repairs per abstract repair for type 1,

— 70410141214+2742854-490
T 70+1341014+16+134+1214+254+18+2742+4285+46+51+490+170+92

and two concrete repairs per inconsistency for type 2.

As mentioned in Section IV-B, we wanted to assess whether
type 3 generator functions specific to a given model deliver
better results. We have written three generator functions of
type 3 and tested them on one model (proll). They reduced
the amount of generated repairs by 90% (compared to type
1 generator functions) while keeping the valid repairs from
type 2 generator functions and the ones that were applied by
the user in version 2 of model proll. As an example, we have
defined a type 3 generator function for lifeline message names,
which only returns operation names of the corresponding
lifeline’s class. To do that, we have to go from the message
to its corresponding lifeline, from the lifeline to the class, and
from the class to the operation and their names. Although, the
example given above of a type 3 generator function could be
easily written. Depending on the user intent to retrieve targeted
values writing type 3 generator functions might require more
effort to write and are not universally reusable for other
models, due to their tailoring to specific model elements.

Please note that our approach provides only concrete repair
alternatives from which the user has to choose in the end. They
are not executed randomly.

VI. LIMITATIONS

This section discusses our current approach limitations that
will be addressed in future work. In this paper we rely
on internal model information including changes that causes
inconsistencies to compute concrete repairs (inspired from
[23]). Thus, abstract repairs that require new knowledge are
not transformed into concrete repairs since only the user can
provide the needed new values.

As we have seen in the previous section, due to the expo-
nential problem of computing concrete repairs, our approach
explores all combinations of values and tests whether they
fix the inconsistencies or not. The main reason for this is
the combination of values of multiple scope elements. For
instance, if we have seven scope elements to repair in an
inconsistency, where every scope element has just 10 values
from generator functions, this results in 107 combinations,
and thus to the same amount of repairs to check. This results
in the limitation that we also test invalid value combinations
due to two main reasons, either because 1) an invalid value
exists for one scope element or 2) values from two or more
scope elements are contradictory with each other (although
the values are valid on their own). As an example, Figure 5
shows the results obtained from analyzing model proll,
where for type 1 generator functions 4.7 x 10* repairs are
tested, but only 1.8 x 103 actually fix the inconsistencies, i.e.,
96% of invalid combinations not fixing the inconsistencies,
whereas 4% are actually concrete repairs. However, in the
end, we do not present those invalid combinations to the
user, and thus, she is not overwhelmed with useless choices.
We only present the concrete repairs that are able fix the
inconsistencies. This limitation affects the performance of our
approach, and therefore, only computation time suffers. For the
model sizes from 284 elements to 1410 elements the time to
generate all concrete repairs was from 0.5s to 2 minutes. Only
for the largest model Dice it took 20 minutes overall and 6
seconds per inconsistency on average. To reduce the amount of

combinations we need a mechanism to identify invalid values
before combining them which is a non trivial task.

Another limitation is that our approach cannot find one
single concrete repair for multiple model elements which are
depending on each other, only for each model element on its
own, which may not repair the whole inconsistency. In this
case, the repair is not proposed to the user among alternative
repairs. This is left for future work.

VII. THREATS TO VALIDITY

In this section we discuss internal, external and conclusion
threats to validity after Wohlin et. al. [28].

Internal Validity: The internal threats to validity are cen-
tered on the cutoff threshold during the repair computation
process. This threshold limits the validation process to a fixed
amount of 5000 concrete repairs for one abstract repair. With
this limit set, the evaluation might miss some valid concrete
repairs in seldom cases, where an abstract repair contains a
large amount of scope elements (in our evaluation 25% AR had
more than 4 scope elements). However, only type 1 generator
functions are mainly affected, because they return the largest
amount of values. We chose the threshold to be 5000 after
trying different sizes (500, 1000, 5000 and 10000), because
we observed that after 5000 the number of validated concrete
repairs becomes stable while relevant repairs (that are applied
by the user in case of the three versioned models) are still
computed in our case studies. Thus, we deem this threat to
validity as acceptable here. Moreover, our approach depends
on the expressed OCL consistency rules which are specified
by the user. We only check their syntactic correctness, but not
their semantic correctness/completeness since only the user
knows its intent. It is also not possible to guarantee that our
approach will always find concrete repairs, since the generator
functions purely rely on model internal information and any
arbitrary model can be used.

External Validity: We implemented our approach for UML
and OCL, although we are confident that the generation of
concrete repairs is also applicable to other modeling languages
like SysML, XML (and XSD), we cannot generalize our
results to all modeling constraint languages. However, The
only requirement to apply our approach to other domains, is
to check consistency rules (detect inconsistent locations), and
to retrieve model internal values. In future work we plan to
evaluate on other modeling languages as well.

Conclusion Validity: Our evaluation gives promising re-
sults (quantitatively and qualitatively), demonstrating that re-
pairing a model with only internal information is possible
and relevant/useful, thus we achieved all three goals from
Section V-B. The results in our case studies indicate that we
are able to convert a large amount of abstract repairs, which do
not require new information in the model, to concrete repairs.
However, we only had 3 versioned models that showed the
relevance of our concrete repairs. To have more evident results,
we want to evaluate on more versioned models.

VIII. RELATED WORK

This section focuses on approaches that repair model incon-
sistencies. Finding concrete and executable repairs in software

models is an active field of research. This section presents and
discusses the works closest to ours.

Abstract repairs: As presented in Section IV, our approach
relies on abstract repairs as input for finding corresponding
concrete repairs. Abstract repairs have been shown to be an
effective and easy way of providing inconsistency information
[13], [19], [25], [29]. However, our approach would also
work with triple graph grammar rules [30] or plain rule
parsing. For our prototype implementation, we employed the
Model/Analyzer consistency checking framework for finding
inconsistencies and obtaining abstract repairs [13]. However,
other approaches that provide abstract repairs may also be
used as input for our approach to generate concrete repairs.
For instance Xiong et al. and Jackson et al. use a very
similar notation of abstract repairs, which would be suitable
for our abstract to concrete repair algorithm [19], [29]. In
summary, the only requirement for other approaches is that
they provide affected model elements, their properties and the
corresponding repair operation. Note that the Model/Analyzer
is able to find concrete repairs in rare cases [21], but does not
aim entirely at finding concrete repairs as in our paper.

Concrete repairs: There are multiple approaches for re-
pairing models. For instance, da Silva et al. generate concrete
repairs by defining cause detection rules combined with effect
canceling functions [16]. Similarly, the approach presented by
Xiong et al. requires engineers to adapt OCL constraints to
provide fixing information within a consistency rule [19]. In
contrast our approach does not require to manually define how
certain inconsistencies should be fixed, instead it only requires
defining generator functions to obtain meaningful values for
the model elements and their properties.

Nentwich et al. also define repair actions and repairs, and
they are able to perform consistency checking on UML models
[22]. Da Silva et al. also use repairs to resolve inconsistencies
in their UML models and try to find concrete versions of
abstract repairs [16]. Also Xiong et al. may be used to
define consistency rules and fix model inconsistencies with the
Beanbag language [19]. We extended the approach of Reder
et al. that was built for usage with the employed incremental
consistency checker [13]. Moreover, this approach does not
require fixing-related statements to be added to the applied
OCL constraints, as it is in [19]. Neither does it try to execute
adaptations automatically as it is proposed by [16], [19].

Kolovos et al. specify cross-model constraints to define
consistency rules over model elements and provide fixing
strategies for those constraints [17]. However in case of an
inconsistency it is necessary to manually select which of the
provided fixing strategies has to be executed. In contrast to
our approach we perform this task automatically by validating
all previously generated concrete repairs.

Another relevant approach for getting concrete repairs for
models is shown in Hegedues et al. where a Constraint Satis-
faction Problem solver (CSP solver) is used to repair incon-
sistencies for Domain-Specific Modeling Languages (DSMLs)
[18]. In contrast to this approach we are able to get concrete re-
pairs not only for DSMLs but any modeling language and our
approach is capable of providing not only syntactically correct
values, but also semantically correct values through generator
functions. Puissant et al. proposed a planning technique to

generate repair plans for inconsistencies while aiming at a fast
computation of repairs without assessing the relevance of the
repair plans [31]. In their repair plans, they allow generation of
random elements which can reduce the quality of the models
and they do not rely on existing information in the models. To
the best of our knowledge, we are the first to compute concrete
repairs with model intrinsic information, and do not need user
interaction during runtime.

Le et al. propose repairs for bugs in programs by applying
structured specification, deductive verification and genetic
programming [32]. They also further elaborated this approach
with automated example extraction and repair synthesis based
on those examples [33]. Similarly Ma et al. focus on vulner-
ability repair in source code by learning from training sets
and deducing repair templates to fix those vulnerabilities [34].
In contrast to those approaches, we do not need test cases or
training sets to check the correctness/fitness of the generated
repairs, and therefore no additional user input is necessary.

IX. CONCLUSION AND FUTURE WORK

In the paper we presented a novel approach for automati-
cally generating concrete and executable repairs for models in
software development. Our approach is based on inconsistency
information, abstract repairs and a set of generator functions.
We proposed different types of generator functions which can
be used generically for different models and inconsistencies.
This means, the user can always add generator functions that
are specific to her context and models. We evaluated our
approach by applying 20 consistency rules to 6 models. To
check the relevance of our generated repairs, we have used 3
versioned models from GitHub and showed that we are able to
replicate 100% of the modeler’s fixing actions. Furthermore,
we have shown that on average we are able to find at least
one concrete repair for more than 55% on average, and 65%
for type 2 generator functions of all abstract repairs.

For future work we plan to perform an incremental gen-
eration and validation of value combinations i.e., check valid
values before combining them. Additionally, our evaluation did
not consider side effects of repairs (i.e., executing one repair
leads to an inconsistency).

We plan to construct a graph which reflects the side effects
of repairs, and a loop detection algorithm which can be applied
to filter concrete repairs that lead to an endless loop. Finally,
when lots of alternative repairs are computed, we plan to
provide ranking heuristics to help the user in selecting an
appropriate repair, e.g., ranking repairs based on the number
of their model changes or possible side effects.

Acknowledgment. The research leading to these results has
received funding from the Austrian Science Fund (FWF) under
the grants FWF P 25289-N15.

REFERENCES

[1] S. Kent, “Model driven engineering,” in IFM, pp. 286-298, 2002.

[2] S. Beydeda, M. Book, V. Gruhn, et al., Model-driven software develop-
ment, vol. 15. Springer, 2005.

[3] A. Egyed, “Automatically detecting and tracking inconsistencies in
software design models,” IEEE Trans. Software Eng., vol. 37, no. 2,
pp. 188-204, 2011.

[4] S. H. Kan, Metrics and models in software quality engineering. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[5]
[6]
[7]
[8]
[9]
[10]

[11]

[12]
[13]
[14]

[15]

(16]

[17]

[18]

[19]

[20]
[21]
(22]

(23]

[24]
[25]
[26]
[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

C. Ashbacher, “"the unified modeling language reference manual, second
edition", by james rumbaugh,” JOT, vol. 3, no. 10, pp. 193-195, 2004.
R. France and B. Rumpe, “Domain specific modeling,” Software and
Systems Modeling, vol. 4, no. 1, pp. 1-3, 2005.

D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25-31, 2006.

M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060-1076, 1980.

M. Morisio, M. Ezran, and C. Tully, “Success and failure factors in
software reuse,” I[EEE TSE, vol. 28, no. 4, pp. 340-357, 2002.

W. B. Frakes and K. Kang, “Software reuse research: Status and future,”
IEEE TSE, vol. 31, no. 7, pp. 529-536, 2005.

M. Van Genuchten, “Why is software late? an empirical study of reasons
for delay in software development,” IEEE Transactions on software
engineering, vol. 17, no. 6, pp. 582-590, 1991.

R. N. Charette, “Why software fails [software failure],” IEEE Spectrum,
vol. 42, no. 9, pp. 42-49, 2005.

A. Reder and A. Egyed, “Incremental consistency checking for complex
design rules and larger model changes,” in MODELS, pp. 202-218, 2012.
C. Nentwich, W. Emmerich, and A. Finkelstein, “Static consistency
checking for distributed specifications,” in ASE, p. 115, 2001.

X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in ICSE,
pp. 511-520, 2008.

M. A. A. da Silva, A. Mougenot, X. Blanc, and R. Bendraou, “Towards
automated inconsistency handling in design models,” in CAiSE, pp. 348—
362, 2010.

D. S. Kolovos, R. F. Paige, and F. Polack, “Detecting and repairing
inconsistencies across heterogeneous models,” in ICST, pp. 356-364,
2008.

A. Hegediis, A. Horvith, 1. Rath, M. C. Branco, and D. Varrd, “Quick
fix generation for DSMLs,” in VL/HCC, pp. 17-24, 2011.

Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei,
“Supporting automatic model inconsistency fixing,” in FSE, pp. 315-
324, 2009.

S. M. Shah, K. Anastasakis, and B. Bordbar, “From UML to alloy and
back again,” in MODELS, pp. 158-171, Springer, 2009.

A. Reder and A. Egyed, “Computing repair trees for resolving incon-
sistencies in design models,” in ASE, pp. 220-229, 2012.

C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency manage-
ment with repair actions,” in ICSE, pp. 455464, 2003.

M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients
already exist? an empirical inquiry into the redundancy assumptions
of program repair approaches,” in ICSE ’14, Companion Proceedings,
pp. 492-495, 2014.

OMG, “Object Constraint Language,” 2014.

A. Reder and A. Egyed, “Determining the cause of a design model
inconsistency,” IEEE TSE, vol. 39, no. 11, pp. 1531-1548, 2013.

A. Egyed, E. Letier, and A. Finkelstein, “Generating and evaluating
choices for fixing inconsistencies in UML design models,” in ASE,
pp. 99-108, 2008.

R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use UML: mining
github,” pp. 173-183, ACM, 2016.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256-290, 2002.

H. Giese and R. Wagner, “From model transformation to incremental
bidirectional model synchronization,” Software and Systems Modeling,
vol. 8, no. 1, pp. 2143, 2009.

J. P. Puissant, R. Van Der Straeten, and T. Mens, “Resolving model in-
consistencies using automated regression planning,” Software & Systems
Modeling, vol. 14, no. 1, pp. 461-481, 2015.

X.-B. D. Le, Q. L. Le, D. Lo, and C. Le Goues, “Enhancing automated
program repair with deductive verification,” in ICSME, 2016 IEEE
International Conference on, pp. 428-432, IEEE, 2016.

X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,”
FSE. ACM, 2017.

S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng, “Vurle: Automatic vul-
nerability detection and repair by learning from examples,” in European
Symposium on Research in Computer Security, pp. 229-246, Springer,
2017.

